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The mass-radius relation for White Dwarfs
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Understanding the mass limit (1)

@ When approaching the mass limit, the velocities in the White Dwarf
become higher and start approaching the speed of light c.

@ We therefore need a relativistic treatment to understand this regime.

@ From the Uncertainty Principle, our expression for the momentum is

given as
h h

n13 " (N/R3)-1/3

Ap = (1)

@ In special relativity, the kinetic energy of one particle follows as

E=Apc.
@ The kinetic energy of all particles then follows as
Nhc
Exin = NApc = W (2)
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Understanding the mass limit (2)

@ Expressing the number of particles as N = M/m,, we obtain

Mhc
my (M/(mpR3))~1/3

Exin = (3)

@ The kinetic energy should be approximately equal to the gravitational

energy, i.e.
Mhc GM? (@)
mp (M/(mpR3) 2 R
@ Solving for M yields
he\ 3/2
M ~ <GC> my2 ~ 1.7 Mo, (5)

@ A more accurate calculation yields 1.39 M.
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Understanding the mass limit (3)

@ The derivation shows that White Dwarfs can only exist up to a critical
mass, the Chandrasekhar mass limit.

@ When this mass is exceeded by accretion, the White Dwarf is no
longer stable, but starts collapsing as a result of gravity.

@ At high enough densities, the Uncertainty Principle becomes relevant
for the protons and neutrons. The neutron pressure then stabilizes the
star, collapse stops.

@ When the collapse stops, the kinetic energy from the collapse is
released as thermal energy, the White Dwarf explodes!

@ This happens always with (roughly) the same mass, and therefore a
similar energy for the explosion.
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Type la supernova lightcurves
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Unterstanding the light curves
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From the Nobel lecture by Saul Permutter (see online material).
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Standardizing the light curves — standard candles
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A Hubble diagram with type la supernovae
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Acceleration vs deceleration
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Implications of the supernova measurements (1)
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Implications of the supernova measurements (2)
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Implications of the supernova measurements (3)
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Implications of the supernova measurements (4)

Relative size of the universe
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Implications of the supernova measurements (5)
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Implications of the supernova measurements (6)

@ With the type la supernovae, we can probe cosmic expansion beyond
redshift 1, to distances larger than ~ 7000 Mpc.

@ From the measurements, we can obtain the deceleration parameter,
and find that go < 0.

@ To break the degeneracies in the parameters Q5 and ,,, we need
additional datasets, in particular from the CMB and from galaxy
clusters.
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Implications of the supernova measurements (7)

Proto: Ariel Zambslich, Copyright € Photo: Balinda Pratten, Australian Proto: Homewood Photography
Mobel Media AB National University
Saul Perimutter Brian P. Schmidt Adam G. Riess

Physics nobel prize 2011 for the discovery of the accelerated expansion.
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Implications of the supernova measurements (8)

Mario Hamuy: Premio Nacional de las Ciencias Exactas 2015.
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Complementary measurements

@ As we have seen, the supernova observations tell us that gy < 0, but
it is hard to disentangle Q,, and Q.

@ So far, we also haven't determined Q,.4.
@ We will therefore need complementary measurements to disentangle

these parameters. This will be done using the cosmic microwave
background.
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The cosmic microwave background (1)

A large number of cosmological information comes from the
observation of the cosmic microwave background (CMB).

@ 1948: Prediction of the CMB by Alpher, Herman and Gamov for Hot
Big Bang models.

@ 1965: Detection of the background by Penzias and Wilson as a radio
excess (nobel prize 1978).

@ Temperature of the background: Tcvp,o = 2.725 £ 0.001 K.

@ Most perfect blackbody ever observed or produced in lab!
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The cosmic microwave background (2)
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The cosmic microwave background (3)

@ The energy density of the CMB is given as
erad,0 = aTCMB s (6)

with a = 47" the radiation constant, and o the Stefan-Boltzmann
constant.

@ From Tcmpo = 2.725 K, we thus obtain

0—13

€rado ~ 4.2 x 1 erg cm 3. (7)
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The cosmic microwave background (4)

@ From the critical density

3H3
Pc0 = 8r G’ (8)
with Hy ~ 70 km/s/Mpc, we have
Qoo = 40 42 % 10°°, (9)
C*Pcr,0
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The cosmic microwave background (5)

o CMB spectrum today:
8mh v3dv
c3 hy
exp (ks TCMB,O) -1

@ The photons at frequency v at scale factor a were diluted by
expansion and redshifted. With a(tg) = 1, the respective quantities
today are thus

eo(v)dv = (10)

vy = va, dvg = dva. (11)

o Considering dilution and redshifting, the energy density of photons
with frequency v at scale factor a < 1 was

8mh 3dv

3
C ahv o
eXp ( ke TcMB,0 ) 1
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The cosmic microwave background (6)

@ Defining
T
Tevs(a) = %, (13)
we thus have
3
e(v)dv = 8mh v dv (14)

c3 exp(L)—l.

ke Tcms(a)

o At every redshift z = a~! — 1, the CMB spectrum can thus be written
as a blackbody spectrum.

e From cosmology, we know that e.,q o< a~*. From the Planck law, we
expect eqq < T4,

@ Both relations are consistent, as Tcyg o< a *.
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The photon-to-baryon ratio (1)

@ We have just seen that the present energy in the CMB is

€rad,0 ~ 4.2 X 10713 erg em—3.

@ The typical energy of a CMB photon is

Emmean ~ 3ks Tenpo ~ 7.0 x 107 eV. (15)
e Considering 1 eV=1.6 x 10712 erg, the present number density of
photons is
e _
nyo~ =290 37 %102 em 3. (16)
mean
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The photon-to-baryon ratio (2)

@ The density parameter of the total non-relativistic matter corresponds
to Qmo ~ 0.3. From spiral galaxies and galaxy clusters, the ratio of
baryonic to dark matter corresponds to ~ 16%.

@ The density parameter of the baryons is thus
Qg ~ 0.05. (17)

@ The baryons consist of ~ 76% hydrogen, 24% helium and a small
amount of heavy elements. The mean mass per baryon is thus
~ 1.2 my, with my the mass of the hydrogen atom.

@ We thus estimate the number density of the baryons as

QB)OCr,O

~ 24 %1077 em™3. 18
1.2m X om (18)

ngo ~
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The photon-to-baryon ratio (3)

@ From our estimates, we obtain the photon-to-baryon ratio as

D0 1.5 % 10°. (19)
ngo

@ We thus have many more photons than baryons in the Universe.

@ Both the number density of the photons and the number density of
the baryons evolves as a~3, so this ratio is constant in time!

@ We will see that the photon-to-baryon ratio can be independently
measured from Big Bang Nucleosynthesis.
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Origin of the CMB (1)

@ We have seen that the temperature of the CMB scales as a~ !,
implying that photons were much more energetic in the early Universe.

@ The early Universe has consisted of an ionized plasma consisting of
ionized nuclei and free electrons, intensely coupled to the photons.

@ Assuming a fully ionized plasma, the number density of electrons was
-3
Ne ~ nga ~. (20)

@ The mean free path for interactions via Thomson scattering was thus

1

)
NeoT

(21)

Imfp ~

with o7 = 6.65 x 1072% cm? the Thomson scattering cross section.
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Origin of the CMB (2)

@ At a redshift of z ~ 1000, assuming a fully ionized plasma, the mean
free path of the photons was thus approximately

1
ne(z = 1000)o 1

Infp(z = 1000) ~ ~ 6.3 x 10! cm. (22)

e From a  t2/3, we can estimate the age of the Universe at that time
as

— 1 32 5
t(z =1000) ~ (1oo7 ) fo~43x10°yis. (23)

@ In the absence of scattering, the light could have traveled a maximum
distance of

Inax ~ ¢ t(z = 1000) ~ 4.1 x 10%* cm. (24)

@ As hyax > Infp, the light must have scattered many times!
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Origin of the CMB (3)
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Origin of the CMB (4)

@ When the protons and electrons in the Universe recombined,
Thomson scattering stopped, and the photons could travel freely
throughout the Universe.

@ To understand the origin of the CMB, we must therefore understand
how the Universe has turned into a neutral state.

@ The recombination process is predominantly given through the
reactions

p+e — H+n, (25)
H+v—p+e . (26)
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Origin of the CMB (5)

@ In the case of statistical equilibrium, the number density of different
chemical species i is given via the Maxwell-Boltzmann distribution:

nj = gi <n;7T ) elui=m)/T, (27)

with g; the number of internal degrees of freedom, m; the mass, u;
the chemical potential and T the temperature.

@ Chemical reactions minimize the net chemical potential = > u;.

e Evaluating Eq. (27) for protons (p), electrons (e) and atomic
hydrogen (H), one can show that

3/2
Mphe | -B/T <meT> lbpHse—un) /T (28)
ny 27

with B = mp, + me — my = 13.6 eV the binding energy of atomic
hydrogen, and g, = ge = %gH =2.
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Origin of the CMB (6)

@ In a state of chemical equilibrium, we have ji, 4 p1e = 11y, leading to
the simplified relation

3/2
Mple BT meT 5
o e (27r > . (29)
@ We now define the ionized fraction x. of hydrogen as
Nnp = Ne=XeNp, (30)
ng = np—np=(1—-xe)ng, (31)

with ng the number density of the baryons.

@ We can then rewrite Eq. (29) as the Saha equation:

3/2
nemp _ xe 1 (meT\Y g 32)
ngng  l—x. ng \ 2= '
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Origin of the CMB (7)

@ From the exponential term of the Saha equation, one could expect
that recombination occurs when T ~ B, i.e. when the temperature of
the Universe is about equal to the binding energy of atomic hydrogen.

o With B = 13.6 eV, the latter would imply a temperature
T ~1.6x 10° K.

e With the relation Temp = TomB,o(1 + z), the latter would
correspond to a redshift of z ~ 5.8 x 10%.

@ However, evaluating the Saha equation, one actually finds that
recombination happens much later, more closely to z ~ 1000!

@ The latter can be shown to be related to the high photon-to-baryon
ratio of ~ 10, due to high-frequency photons keeping the Universe
ionized.
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Origin of the CMB (8)
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Origin of the CMB (9)

@ In the general case, one has to solve an equation solving the
non-equilibrium evolution both for hydrogen and helium.

@ We denote here the ionized fraction of hydrogen/helium as x;, with
i =H,He. We then have:

dx;
= OBMHpXeXi, (33)

with nyy, the total number density of hydrogen plus protons, x. the
total ionization fraction (xe = x;) for a pure hydrogen gas.
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Origin of the CMB (10)
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Origin of the CMB (11)

@ Direct recombinations to the ground state will release energetic
photons, which will directly ionize a neighboring atom (no net effect).

@ A recombination to the excited state of atomic hydrogen however
yields a photon cascade.

@ In particular the 2s-1s transition procedes via the emission of two
photons and allows no subsequent ionization.

@ A detailed modeling of these processes yields the evolution of the
ionization degree as

B 31 /Qmh? Zz \12.75
x(z)=2.4x10 7Qbh2 (71000) (34)

for 800 < z < 1200.
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Origin of the CMB (12)

@ As a result of the rapid recombination, the Thompson scattering
optical depth decreases substantially with redshift.

@ The radiation in the Universe can thus propagate without any further
interaction.

@ The epoch of recombination is thus also referred to as the epoch of
last scattering.

@ The density structure from that epoch is thus imprinted in the CMB
radiation we observe today!
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Origin of the CMB (13)
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Origin of the CMB (14)

@ In general, the recombination rate in the Universe is given as krecnenp,
with k.. the temperature-dependent recombination coefficient.
@ The recombination timescale is thus
Ne 1 1 _1.3

Trec = = = X X, a. (35)
krecnenp krecnp KrecXeNB

@ The time available for recombinations is roughly the age of the
Universe at redshift z, i.e.

3/2
to<a3/2:< ! ) . (36)

1+z

@ The timescale required for recombinations thus increases more rapidly
than the age of the Universe.

@ Recombination will thus become highly inefficient, leading to a
constant ionization degree with xe ~ 2 x 10~ (freeze-out).
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Origin of the CMB (15)
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(top: standard model, bottom: Qg = Qiot = 1). Seager et al. (2000).
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Origin of the CMB (16)

Publicly available: RECFAST code
http://www.astro.ubc.ca/people/scott/recfast.html

Solves hydrogen and helium recombination for different cosmological
models, reproducing results of detailed multi-level calculations.

Available with Fortran and C++.

e Documentation: Seager, Sasselov & Scott (1999).
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