Metodos Numericos en Astronomia Teorica, lecture 2 J

Dominik Schleicher

Universidad de Concepcion

April 12, 2020

Dominik Schleicher (2020) Metodos Numericos en Astronomia Teorica, I April 12, 2020 1/50



© Good programming style
© Error analysis

© Numerical integration
@ Root finding

© Newton's method

@ Newton's method 2D
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Good programming style

Good programming style (1)

» Write Clearly - don't be too clever - don't sacrifice clarity for efficiency.
+ Say what you mean, simply and directly.

+ Be sparing with temporary variables.

» Parenthesize to avoid ambiguity.

+ Use library functions.

+ Replace repetitive expressions by calls to a common function.

« Choose variable names that won't be confused.

« If a logical expression is hard to understand, try transforming it.
» Choose a data representation which makes the program simple.
« Don't patch bad code - rewrite it.

» Write and test a big program in small pieces.

» Test input for plausibility and validity.

+ Identify bad input - recover if possible.

+ Make sure input doesn't violate the limits of the program.
» Terminate input by end-of-file or marker, not by count.

+ Make input easy to prepare and output self-explanatory.

See http://www.eg.bucknell.edu/xmeng/Course/CS2330/Handout/StyleKP.html
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Good programming style

Good programming style (2)

» Make sure all variables are initialized before use.

» Watch out for off-by-one errors.

» Make sure your program "does nothing" gracefully.

o Test programs at their boundary values.

¢ Check some answers by hand.

+ 10.0 times 0.1 is hardly ever 1.0.

» Don't compare floating point numbers solely for equality.

» Make it right before you make it faster.

» Make it fail-safe before you make it faster.

» Make it clear before you make it faster.

» To make it faster, change the algorithm not small details in the code.
+ Actually test code to see how fast it is.

See http://www.eg.bucknell.edu/xmeng/Course/CS2330/Handout/StyleKP.html
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Good programming style

Good programming style (3)

+ Make sure comments and code agree.

+ Use variable names that mean something.

+ Format a program to help the reader understand it.

» Don't just echo code in comments - make every comment meaningful.
» Document your data structures.

« Don't over comment.

« Don't comment bad code - rewite it.

+ Use recursive procedures for recursively defined data structures.

+ Use data arrays to avoid repetitive control sequences.

See http://www.eg.bucknell.edu/xmeng/Course/CS2330/Handout/StyleKP.html
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Error analysis

Error analysis

@ An abstract problem setup consists of some data x and a desired
result f(x), defined as a method f : x — f(x).

@ In a real problem, we have data with limited accuracy. In addition,
the method f cannot be applied with infinite accuracy, due to

» Limited accuracy = round-off errors,
> limited space = approximation errors,
> limited time = methodological errors.

@ In general, one thus employs an approximate method , leading to

an approximate result ()

@ The approximation and methodological errors need to be discussed for
each method separately.
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Error analysis

Representation of real numbers

@ The real numbers are an uncountably infinite set - every
representation must be approximate.

@ Today it is common to adopt a floating point representation, given as
x =ax 2% (1)

with
e € {emins s Cmax} (2)

I
a = vZa;b‘i or 0. (3)
i=1

@ Here, v = £1 denotes the sign, and a; =0, 1.

@ It is convention that a; = 1 (uniqueness of representation).
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Error analysis

Advantages of Floating Point Representation

@ The relative accuracy of floating point representation is independent

of x.

@ All numbers between a minimum of |x| = 2ém»~! and a maximum of

x| = 2¢éma<(1 — 27') can be represented with an accuracy of

with ¢ = 21/,

e Numbers with |x| > 2mx(1

— 27/ are said to cause overflow,
numbers with |x| < 2émin—1

are said to cause underflow.
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Error analysis

Realizations of Floating Point Representation

@ Modern programming languages distinguish data types with single
precision and double precision:

Level Width Range at full precision Precision!®
Single precision |32 bits | +1.18 x 1073 to +3.4 x 10 Approximately 7 decimal digits
Double precision | 64 bits | +2.23 x 1073 10 +1.80 x 10°°% | Approximately 16 decimal digits
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Error analysis

Error propagation

@ The relative representation error €/2 will propagate due to numerical
operations.

e For standard operations @ € {+, —, -, /}, we have

ab =(aob)(1+¢€), withé<e. (5)

@ In general, error propagation can be described as a random walk.
After N operations, the relative accuracy is thus v/ Ne.
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Numerical integration

Numerical integration

@ The problem referred to as numerical integration is to provide an
approximate solution to a definite integral of the form

b
I(a, b):/ f(x)dx. (6)

@ The mathematical definition of an integral is the limit of the sum over
boxes as their width h approaches zero:

(b—a)/h

/abf(x)dx—mqo h Z f(x;) (7)

Dominik Schleicher (2020) Metodos Numericos en Astronomia Teorica, I April 12, 2020 11 /50



Numerical integration

Numerical integration

o Numerically, the integral is approximated as a finite sum over boxes:

N

b
/ f(x)dx ~ Z f(xi)wi. (8)

i=1
The function f is thus discretized into values f; = f(x;) at the points
Xj, with w; denoting an appropriate weight at point x;.
@ One possibile choice for the discretization is to adopt

b—a
N )

wj=h:= Xjiy1 = Xj + h. (9)

@ This approach is however crude and requires a small spacings h. We
will thus consider more accurate approaches in the following.
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Numerical integration

Numerical integration

Fig. 1: Approximation via rectangles.
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Numerical integration

Numerical integration
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Fig. 2: First-order improvement: Trapezoid rule.
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Numerical integration

Trapezoid rule

@ Trapezoid rule: N evenly spaced points x;, N — 1 length intervals h:

b—a
h = 1
N1 (10)
xi = a+(i—1h i=1N (11)

@ We construct a trapezoid of width h in each interval /, consisting of
(xi,0), (xi+1,0), (Xiv1, F(xit1)), (xi, F(x7)).

@ The area of a single trapezoid is then

h(f; + f 1 1
/ F(x)dx ~ (J;H) = Shfi + Shfia (12)

i

@ For N = 2 points, the weights are thus w; = wy = %h.
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Numerical integration

Trapezoid rule

e Summing up the trapezoids over the entire interval [a, b] yields

b
h h
/ f(X)dXN §ﬂ+hf2+hf—3+...+hf/\/,1+§f/\/. (13)
a

@ The internal points are counted twice and thus obtain weight h, while
the endpoints have weight h/2. Thus,

h h
=32 on 2L 14
¥ {2 2} (14)
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Numerical integration

Simpson's rule

Fig. 3: Second-order improvement: Simpson's rule.
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Numerical integration

Simpson's rule

@ As for the trapezoidal rule, one adopts N points with equal spacing h.
Here, N needs to be an odd number.

@ In each interval, the function f is now approximated by a parabola
f(x) ~ ax® + Bx + 1. (15)

@ The area of each section is now the integral of such a parabola,

Xi+1
/ (Ozx2 + Bx +y)dx = QT + % + ,}/X‘X/+l (16)
Xi
e Considering an interval [—1, 1], we have
+1 )
/1 (Ozx2 + Bx +y)dx = ?a + 27. (17)
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Numerical integration

Simpson's rule

@ Due to the identities

f(_l) = a—5+7»

f0) =
f(1) = a+f+7,
we have
f(1)+f(—1
o= MWD g
f(1)+f(-1
PNCELC
= f(0)
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Numerical integration

Simpson's rule

@ The integral can thus be expressed as the weighted sum over the
function at 3 points:
/*1 f(—=1) 4f(0) f(1)

3 (ax® + Bx +7)dx = 3t 3t (24)

@ As 3 values of the function are needed, the result is generalized by
evaluating f over two adjacent intervals:

xith xith X h 4h  h

[ tade= [t [ fde 3t Y B

X,'—h Xi X,'—h 3 3 3
(25)

@ As we integrate over pairs of intervals, N needs to be an odd number.
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Numerical integration

Simpson's rule

@ Integrating over the entire interval yields

b
h 4h 2h 4h 4h h
F(X)dx ~ ~f+ —fh+—Ff+ —f+..+—Fy_ 1+ =Fy. (26
/a(x)x it gt ghtfhit +3N1+3N()

@ The integration weights are thus given as

h 4h 2h 4h 4h h
wi = { } (27)

3737373777373

@ The sum of the weights can be used to check the integration:

N
D wi=(N-1)h (28)
i=1
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Numerical integration

Integration error

@ In general, one aims for a method yielding an accurate answer using
the least number of integration points.

@ To estimate both the absolute method error E,;, and the relative
method error ¢,,, we expand f(x) in a Taylor series around the
midpoint of each interval /.

@ The total error is then estimated by multiplying with the number of
grid points N.

@ The trapezoid rule uses linear interpolation for the function f. The
inaccuracy in f is thus of order h?f”, and after integration h3f".

)3
@ The error in the overall interval is thus of order NA3f" ~ (be) .
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Numerical integration

Integration error

@ For Simpson'’s rule, f is approximated with a parabolic function.
@ The error in approximating f is thus of order ),

@ One could thus naively expect an error of h*f(3) after integration.
However, the third-order terms cancel out, and the dominant error is
of order h®f(4).

o Multiplying with N, the total integral has an error of order
5
NRSF®) ~ (22l (%),

@ For small intervals h and well-behaved functions f, the Simpson's rule
should converge more rapidly than the trapezoid rule.
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Numerical integration

Integration error

@ The error discussed above is due to the approximation of f, yielding a
relative method error is given as ¢, = E/f.

@ In addition, there is an accumulating round-off error due to the finite
machine precision €pmp.

@ We assume after N steps, the relative round-off error is random and
of the form

€ro = \/Nemp (29)

(random walk).

e For single precision, we have €, ~ 1077 and €mp ~ 10715 for
double-precision.
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Numerical integration

Integration error

@ In the following, we want to determine the N which minimizes the

total relative error
€tot = €ro + €m. (30)

@ As ¢,, decreases with N, €:0+ is minimal if both errors become
approximately equal:

@ We temporarily adopt
(32)

N~ f (33)
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Numerical integration

Integration error - trapezoid rule

@ When applied to the trapezoid rule, Eq. (31) yields

f(b—a)® 1
Viiemy ~ oo (34)
1

@ For single precision, the optimum number N is thus
N=1=(1/10"7)%/° = 631.

@ For double precision, the optimum number N equals
N = f = (1/1071%)2/5 = 10,
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Numerical integration

Integration error - Simpson's rule

@ When applied to Simpson's rule, Eq. (31) yields

f®(b— a)® 1
\/Nﬁmp ~ T = W’ (36)
1

@ For single precision, the optimum number N is thus
N=1=(1/10"7)%/° = 36.

@ For double precision, the optimum number N equals
N =1=(1/10"1%)%/9 = 2154,

Dominik Schleicher (2020) Metodos Numericos en Astronomia Teorica, I April 12, 2020 27 /50



Numerical integration

Integration error - conclusion

@ Simpson’s rule considerably improves about trapezoid rule, as a high
precision is reached for a much smaller amount of steps.

@ In fact, Simpson’s rule allows to obtain errors rather close to machine
precision.

@ The best numerical approximation to an integral is not obtained for
N — oo, but for N < 1000.
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Numerical integration

Newton-Cotes Formulae

@ Both the trapezoid rule and Simpson's rule are part of the
Newton-Cotes formulae, a family of numerical integration techniques.

@ General procedure: The interval [a, b] is divided into n equal parts of
width h = (b — a)/n, with the definitions

Xn+1 — Xn + h7 (38)

fn = f(xn)- (39)

@ The function f is approximated by a Lagrange interpolating
polynomial.

o Newton-Cotes formulae are called " closed” if the end points [x1, Xp]
are considered, and "open” otherwise.

@ While many different Newton-Cotes formulae exist, the Simpson rule

is usually sufficient for practical purposes.
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Numerical integration

Newton-Cotes Formulae

The 4-point closed rule is Simpson's 3/8 rule,
J:"fmdx= Shfi+3 a3 - S B YO
1
(Ueberhuber 1897, p. 100). The 5-point closed rule is Boole's rule,
fstr)dx= EhOA+RAE+I2ARA+TH) - B 7@
]
(Abramowitz and Stegun 1972, p. 886). Higher order rules include the 6-point
Ff[x)dx= 2;—3!:(19_}1 +T5 A 450 +50F +T5f5 + 19 fi) - %h?f”"(.f),
o
7-point
vrTf(x)dx= # R@1f 4216 6 +27 5 +272 f
X

+27 4 4216 fs +41 i) - S0 FU O,

Fig. 4: Newton-Cotes Formulae (source: http://mathworld.wolfram.com).
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Root finding

Root finding

@ Root finding: Given a function f(x), we seek x with

f(x)=0. (40)
@ A general algebraic equation
g(x) = h(x) (41)
can be solved by looking for roots of the function
f(x) = g(x) = h(x). (42)
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Root finding

The bisection method

f(x)

Fig. 5: Finding the root using intervals.
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Root finding

Bisection: Formal approach

e Starting interval [ag, bo] with f(ag)f(bg) < O (opposite signs). In step
i, we will have some interval [a;, b;] with f(a;)f(b;) < 0.

o Calculate midpoint
my= 310 (43)
2
o If f(m;)f(a;) <0, set aj11 = a; and bj11 = m;, otherwise set
aj;1 = mj and bj 1 = b;.
@ Stop iteration once the desired relative error € is reached, i.e.
b — a:
’ el (44)
aj
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Root finding

Bisection: Applicability

Bisection is applicable if the function f(x)

@ is continuous (no jumps).

@ has only one root in the interval [ag, bg]. In case of several roots, the
condition f(a;)f(b;) < 0 may become invalid at some step i and the
algorithm breaks down.

Disadvantages:

@ requires an appropriate initial guess.

@ converges relatively slowly; accuracy improves by a factor of 2 at
every step.
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Root finding

Convergence speed (1)

@ Assume a sequence x;. We say that it converges linearly to L if there
is a number p € (0,1) with

X — L
lim ———— = 45
kme ‘Xk — L‘ ( )

@ For ;1 =0, the convergence is called superlinear, and for p =1, it is
sublinear.

o If =1 and
fim 2 = Xkl g (46)

k—ro0 ’Xk+1 — Xk|
it converges logarithmically.
@ In case of bisection, the accuracy improves by a factor of 2 at every

step (linear convergence).
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Root finding

Convergence speed (2)

o If convergence is superlinear, one says that the sequence converges
with order g > 1 if there is u € (0, 1) with

—L
jim et~ H

4
e T — L] (47)

@ For g = 2, we have quadratic convergence, g = 3 is called cubic
convergence.

@ For a general g, we speak of g-linear convergence.

@ We now seek methods with faster convergence.
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Newton’s method

Newton's method

y=F(x) Jtx0

X n+1 H

Fig. 6: Idea: Search for root along slope f'(x).
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Newton's method

)

Newton’s method

Pz (P2}~

2 f (po £ (po) )
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Dominik Schleicher (2020)
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Fig. 7: lterative convergence.

Metodos Numericos en Astronomia Teorica, It

April 12, 2020

38 /50



Newton’s method

Newton's method

@ Newton's method or Newton-Raphson method:
Taylor expansion:

f(xo+¢€) = f(x0) + f'(x0)e + %f"(xo)e2 + ... (48)
@ To first order, we have
f(xo+¢€) ~ f(x0) + f'(x0)e. (49)
e Eq. (49) describes a tangent line to f at (xo, f(xo)).

@ The tangent intersects with the x-axis at

_ f(xo)
€0 = f/(Xo)’ (50)

yielding a first-order guess for the position of the root, x; = xg + €o.
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Newton’s method

Newton's method

@ The process is iterated using

f(xn)
n— — 1
€ 7 xn) (51)
The estimated position of the root is then
f(xn)
Xn+1 = Xn — f/(Xn). (52)

@ lteration stops once the desired accuracy is reached.

@ The procedure can be unstable near a horizontal asymptote or a local
extremum, but otherwise converges for an appropriate initial guess
(" approximate zero”).
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Newton’s method

Newton's method

@ Assume we have a Newton series x, converging towards x, with

f'(x.) # 0.
@ We define the error at step k via
Xk = Xi + €. (53)
e Expanding f(xx) around x, yields
fixk) = f(x)+F(x)ex + %f"(x*)e,% + ... (54)
= Fladet 57" ()e + . (55)
@ Expansion of f'(x) yields

f'(xk) = F/(x) + " (x ) ex + ... (56)
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Newton’s method

Newton's method

@ We further have

e+l = Xkpl — Xe = €k + (X1 — Xk) (57)
B f(xx)
= (5% f’(Xk (58)

f'(x)ex + %f”(x*)e,%

KT T 00) 1 (%) ex (59)
@ For a> b and e < 1, we have the approximate idendity
ae + 1 be? e+ 1be?/a
2 = 3be”/ (60)
a—+ be 1+ be/a
1
~ (e+§be2/a)(l—be/a) (61)

1 1 1
~ e— Ebe2/a - §b2e2/a2 ~e— Ebez/a. (62)
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Newton’s method

Newton's method

e Application to Eq. (59) yields the series

f”(X*) 2
€k4+1 ™~ 2f,(X*)€k'

o If Newton's method converges, it thus converges quadratically!

@ Newton's method is thus the preferred method for root finding; if it
does not converge, one may however refer to bisection.
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Newton’s method 2D

Newton's method 2D

@ We extend Newton's method to 2D, from which a further
generalization is straightforward.

@ This approach can also be used for complex functions, which can
always be considered as functions of two arguments x and y.

@ We consider the following system of equations:

fl(xvy = 07 (64)
h(x.y) = 0 (65)
@ For this system of equations, we define the Jacobian matrix as
GE(xy) FE(xy)
Jx,y)=1| 85,7 gy 66
(o) (%E(Xay) 82(x,y) (%)
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Newton’s method 2D

Newton's method 2D

@ We further introduce generalized differentials. For this purpose, we
consider the functions

u = ﬂ(Xa}/)» (67)
v = f2(X7}/) (68)
@ Their differentials are given as
du = gi(xyy)dx + g;l(x,y)dy, (69)
oh of
dV - 8X (X,y)dX+ 8_)/ (X7.y)dy (70)

@ This can be recast as
<du> _ %(Xay) %E(Xay) (dX) (71)
dv L(xy) G2(xy)) \dy
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Newton’s method 2D

Newton's method 2D

@ Introducing

x - (). (74)

the generalized differential can be cast as

dU = JdX. (75)
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Newton’s method 2D

Newton's method 2D

@ We consider the following equation
F(X) =0, (76)

which we aim to solve with Newton’s method in 2D. We start with an
initial guess Py = (po, go). In each step i, we perform the following
procedure:

© Evaluate F(Py).

Q Evaluate J(Py).
© Solve the linear system of equations

J(P)AP = —F(P) (77)
for AP. In a case of higher dimensionality, this can be done using the

Gauss elimination method or more advanced procedures.
© Continue the iteration with Pk+1 Pk + AP.
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Newton’s method 2D

Newton's method 2D

@ The method has similar properties as in 1D. In particular, it has a
quadratic convergence, and requires that the function has a non-zero
derivative at the root.

@ However, root finding in 2D and higher dimensions is generally more
difficult, especially if several roots are involved. In such cases, already
a good initial guess is required, or one must screen through a large
parameter space to determine the roots.
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Newton's method 2D

The secant method

Roots of Equarions

» Secant line

Figure: The secant method for root finding.
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Newton’s method 2D

The secant method

The secant method is a straightforward extension of Newton's
method, which requires two data points as an initial guess.

In this method, the derivative of the function is approximated with a
difference quotient.

The iteration procedure is thus
Xn — Xn—1
=x,—f . 78
Xn+1 Xn (Xn) f(Xn) _ f(Xn—l) ( )
Convergence is superlinear, but not quadratic. The order of
convergences corresponds to the golden ratio
1 5
_1+V5 e (79)

2
A generalization to higher dimensions is straightforward.

The secant method predates Newton's method by about 3000 years.
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