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Good programming style

Good programming style (1)

See http://www.eg.bucknell.edu/̃ xmeng/Course/CS2330/Handout/StyleKP.html
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Good programming style

Good programming style (2)

See http://www.eg.bucknell.edu/̃ xmeng/Course/CS2330/Handout/StyleKP.html
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Good programming style

Good programming style (3)

See http://www.eg.bucknell.edu/̃ xmeng/Course/CS2330/Handout/StyleKP.html
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Error analysis

Error analysis

An abstract problem setup consists of some data x and a desired
result f (x), defined as a method f : x 7−→ f (x).

In a real problem, we have data x with limited accuracy. In addition,
the method f cannot be applied with infinite accuracy, due to

I Limited accuracy ⇒ round-off errors,
I limited space ⇒ approximation errors,
I limited time ⇒ methodological errors.

In general, one thus employs an approximate method f , leading to

an approximate result f ( x ).

The approximation and methodological errors need to be discussed for
each method separately.
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Error analysis

Representation of real numbers

The real numbers are an uncountably infinite set - every
representation must be approximate.

Today it is common to adopt a floating point representation, given as

x = a× 2e , (1)

with

e ∈ {emin, ..., emax} (2)

a = v
l∑

i=1

aib
−i or 0. (3)

Here, v = ±1 denotes the sign, and ai = 0, 1.

It is convention that a1 = 1 (uniqueness of representation).
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Error analysis

Advantages of Floating Point Representation

The relative accuracy of floating point representation is independent
of x .

All numbers between a minimum of |x | = 2emin−1 and a maximum of
|x | = 2emax (1− 2−l) can be represented with an accuracy of

|x − x |
|x |

<
ε

2
, (4)

with ε = 21−l .

Numbers with |x | > 2emax (1− 2−l) are said to cause overflow,
numbers with |x | < 2emin−1 are said to cause underflow.
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Error analysis

Realizations of Floating Point Representation

Modern programming languages distinguish data types with single
precision and double precision:
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Error analysis

Error propagation

The relative representation error ε/2 will propagate due to numerical
operations.

For standard operations � ∈ {+,−, ·, /}, we have

a � b = (a� b)(1 + ε̃), with ε̃ < ε. (5)

In general, error propagation can be described as a random walk.
After N operations, the relative accuracy is thus

√
Nε.
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Numerical integration

Numerical integration

The problem referred to as numerical integration is to provide an
approximate solution to a definite integral of the form

I (a, b) =

∫ b

a
f (x)dx . (6)

The mathematical definition of an integral is the limit of the sum over
boxes as their width h approaches zero:

∫ b

a
f (x)dx = lim

h→0

h (b−a)/h∑
i=1

f (xi )

 (7)
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Numerical integration

Numerical integration

Numerically, the integral is approximated as a finite sum over boxes:∫ b

a
f (x)dx ∼

N∑
i=1

f (xi )ωi . (8)

The function f is thus discretized into values fi = f (xi ) at the points
xi , with ωi denoting an appropriate weight at point xi .

One possibile choice for the discretization is to adopt

ωi = h :=
b − a

N
, xi+1 = xi + h. (9)

This approach is however crude and requires a small spacings h. We
will thus consider more accurate approaches in the following.
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Numerical integration

Numerical integration

Fig. 1: Approximation via rectangles.
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Numerical integration

Numerical integration

Fig. 2: First-order improvement: Trapezoid rule.
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Numerical integration

Trapezoid rule

Trapezoid rule: N evenly spaced points xi , N − 1 length intervals h:

h =
b − a

N − 1
(10)

xi = a + (i − 1)h, i = 1,N (11)

We construct a trapezoid of width h in each interval i , consisting of
(xi , 0), (xi+1, 0), (xi+1, f (xi+1)), (xi , f (xi )).

The area of a single trapezoid is then∫ xi+1

xi

f (x)dx ∼ h(fi + fi+1)

2
=

1

2
hfi +

1

2
hfi+1 (12)

For N = 2 points, the weights are thus ω1 = ω2 = 1
2h.
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Numerical integration

Trapezoid rule

Summing up the trapezoids over the entire interval [a, b] yields∫ b

a
f (x)dx ∼ h

2
f1 + hf2 + hf3 + ...+ hfN−1 +

h

2
fN . (13)

The internal points are counted twice and thus obtain weight h, while
the endpoints have weight h/2. Thus,

ωi =

{
h

2
, h, ..., h,

h

2

}
. (14)
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Numerical integration

Simpson’s rule

Fig. 3: Second-order improvement: Simpson’s rule.
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Numerical integration

Simpson’s rule

As for the trapezoidal rule, one adopts N points with equal spacing h.
Here, N needs to be an odd number.

In each interval, the function f is now approximated by a parabola

f (x) ∼ αx2 + βx + γ. (15)

The area of each section is now the integral of such a parabola,∫ xi+1

xi

(αx2 + βx + γ)dx =
αx3

3
+
βx2

2
+ γx

∣∣xi+1

xi
. (16)

Considering an interval [−1, 1], we have∫ +1

−1
(αx2 + βx + γ)dx =

2α

3
+ 2γ. (17)
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Numerical integration

Simpson’s rule

Due to the identities

f (−1) = α− β + γ, (18)

f (0) = γ, (19)

f (1) = α + β + γ, (20)

we have

α =
f (1) + f (−1)

2
− f (0), (21)

β =
f (1) + f (−1)

2
, (22)

γ = f (0). (23)
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Numerical integration

Simpson’s rule

The integral can thus be expressed as the weighted sum over the
function at 3 points:∫ +1

−1
(αx2 + βx + γ)dx =

f (−1)

3
+

4f (0)

3
+

f (1)

3
. (24)

As 3 values of the function are needed, the result is generalized by
evaluating f over two adjacent intervals:∫ xi+h

xi−h
f (x)dx =

∫ xi+h

xi

f (x)dx +

∫ xi

xi−h
f (x)dx ∼ h

3
fi−1 +

4h

3
fi +

h

3
fi+1.

(25)

As we integrate over pairs of intervals, N needs to be an odd number.

Dominik Schleicher (2020) Metodos Numericos en Astronomia Teorica, lecture 2 April 12, 2020 20 / 50



Numerical integration

Simpson’s rule

Integrating over the entire interval yields∫ b

a
f (x)dx ∼ h

3
f1 +

4h

3
f2 +

2h

3
f3 +

4h

3
f4 + ...+

4h

3
fN−1 +

h

3
fN . (26)

The integration weights are thus given as

ωi =

{
h

3
,

4h

3
,

2h

3
,

4h

3
, ...,

4h

3
,
h

3

}
. (27)

The sum of the weights can be used to check the integration:

N∑
i=1

ωi = (N − 1)h. (28)
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Numerical integration

Integration error

In general, one aims for a method yielding an accurate answer using
the least number of integration points.

To estimate both the absolute method error Em and the relative
method error εm, we expand f (x) in a Taylor series around the
midpoint of each interval i .

The total error is then estimated by multiplying with the number of
grid points N.

The trapezoid rule uses linear interpolation for the function f . The
inaccuracy in f is thus of order h2f ′′, and after integration h3f ′′.

The error in the overall interval is thus of order Nh3f ′′ ∼ (b−a)3

N2 f ′′.
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Numerical integration

Integration error

For Simpson’s rule, f is approximated with a parabolic function.

The error in approximating f is thus of order h3f (3).

One could thus naively expect an error of h4f (3) after integration.
However, the third-order terms cancel out, and the dominant error is
of order h5f (4).

Multiplying with N, the total integral has an error of order

Nh5f (4) ∼ (b−a)5

N4 f (4).

For small intervals h and well-behaved functions f , the Simpson’s rule
should converge more rapidly than the trapezoid rule.
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Numerical integration

Integration error

The error discussed above is due to the approximation of f , yielding a
relative method error is given as εm = E/f .

In addition, there is an accumulating round-off error due to the finite
machine precision εmp.

We assume after N steps, the relative round-off error is random and
of the form

εro =
√
Nεmp (29)

(random walk).

For single precision, we have εmp ∼ 10−7 and εmp ∼ 10−15 for
double-precision.
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Numerical integration

Integration error

In the following, we want to determine the N which minimizes the
total relative error

εtot = εro + εm. (30)

As εro decreases with N, εtot is minimal if both errors become
approximately equal:

εro ∼ εm ∼
Em

f
. (31)

We temporarily adopt

b − a = 1 → h =
1

N
(32)

f (n) ∼ f

(b − a)n
∼ f . (33)
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Numerical integration

Integration error - trapezoid rule

When applied to the trapezoid rule, Eq. (31) yields

√
Nεmp ∼ f ′′(b − a)3

fN2
=

1

N2
, (34)

⇒ N ∼ 1

(εmp)2/5
. (35)

For single precision, the optimum number N is thus
N = 1

h = (1/10−7)2/5 = 631.

For double precision, the optimum number N equals
N = 1

h = (1/10−15)2/5 = 106.
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Numerical integration

Integration error - Simpson’s rule

When applied to Simpson’s rule, Eq. (31) yields

√
Nεmp ∼ f (4)(b − a)5

fN4
=

1

N4
, (36)

⇒ N ∼ 1

(εmp)2/9
. (37)

For single precision, the optimum number N is thus
N = 1

h = (1/10−7)2/9 = 36.

For double precision, the optimum number N equals
N = 1

h = (1/10−15)2/9 = 2154.
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Numerical integration

Integration error - conclusion

Simpson’s rule considerably improves about trapezoid rule, as a high
precision is reached for a much smaller amount of steps.

In fact, Simpson’s rule allows to obtain errors rather close to machine
precision.

The best numerical approximation to an integral is not obtained for
N →∞, but for N . 1000.
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Numerical integration

Newton-Cotes Formulae

Both the trapezoid rule and Simpson’s rule are part of the
Newton-Cotes formulae, a family of numerical integration techniques.

General procedure: The interval [a, b] is divided into n equal parts of
width h = (b − a)/n, with the definitions

xn+1 = xn + h, (38)

fn = f (xn). (39)

The function f is approximated by a Lagrange interpolating
polynomial.

Newton-Cotes formulae are called ”closed” if the end points [x1, xn]
are considered, and ”open” otherwise.

While many different Newton-Cotes formulae exist, the Simpson rule
is usually sufficient for practical purposes.
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Numerical integration

Newton-Cotes Formulae

Fig. 4: Newton-Cotes Formulae (source: http://mathworld.wolfram.com).
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Root finding

Root finding

Root finding: Given a function f (x), we seek x with

f (x) = 0. (40)

A general algebraic equation

g(x) = h(x) (41)

can be solved by looking for roots of the function

f (x) = g(x)− h(x). (42)
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Root finding

The bisection method

Fig. 5: Finding the root using intervals.
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Root finding

Bisection: Formal approach

Starting interval [a0, b0] with f (a0)f (b0) < 0 (opposite signs). In step
i , we will have some interval [ai , bi ] with f (ai )f (bi ) < 0.

Calculate midpoint

mi =
ai + bi

2
. (43)

If f (mi )f (ai ) < 0, set ai+1 = ai and bi+1 = mi , otherwise set
ai+1 = mi and bi+1 = bi .

Stop iteration once the desired relative error ε is reached, i.e.∣∣∣∣bi − ai
ai

∣∣∣∣ < ε. (44)
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Root finding

Bisection: Applicability

Bisection is applicable if the function f (x)

is continuous (no jumps).

has only one root in the interval [a0, b0]. In case of several roots, the
condition f (ai )f (bi ) < 0 may become invalid at some step i and the
algorithm breaks down.

Disadvantages:

requires an appropriate initial guess.

converges relatively slowly; accuracy improves by a factor of 2 at
every step.
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Root finding

Convergence speed (1)

Assume a sequence xi . We say that it converges linearly to L if there
is a number µ ∈ (0, 1) with

lim
k→∞

|xk+1 − L|
|xk − L|

= µ (45)

For µ = 0, the convergence is called superlinear, and for µ = 1, it is
sublinear.

If µ = 1 and

lim
k→∞

|xk+2 − xk+1|
|xk+1 − xk |

= 1, (46)

it converges logarithmically.

In case of bisection, the accuracy improves by a factor of 2 at every
step (linear convergence).
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Root finding

Convergence speed (2)

If convergence is superlinear, one says that the sequence converges
with order q > 1 if there is µ ∈ (0, 1) with

lim
k→∞

|xk+1 − L|
|xk − L|q

= µ. (47)

For q = 2, we have quadratic convergence, q = 3 is called cubic
convergence.

For a general q, we speak of q-linear convergence.

We now seek methods with faster convergence.
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Newton’s method

Newton’s method

Fig. 6: Idea: Search for root along slope f ′(x).
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Newton’s method

Newton’s method

Fig. 7: Iterative convergence.

Dominik Schleicher (2020) Metodos Numericos en Astronomia Teorica, lecture 2 April 12, 2020 38 / 50



Newton’s method

Newton’s method

Newton’s method or Newton-Raphson method:
Taylor expansion:

f (x0 + ε) = f (x0) + f ′(x0)ε+
1

2
f ′′(x0)ε2 + ... (48)

To first order, we have

f (x0 + ε) ∼ f (x0) + f ′(x0)ε. (49)

Eq. (49) describes a tangent line to f at (x0, f (x0)).

The tangent intersects with the x-axis at

ε0 = − f (x0)

f ′(x0)
, (50)

yielding a first-order guess for the position of the root, x1 = x0 + ε0.
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Newton’s method

Newton’s method

The process is iterated using

εn = − f (xn)

f ′(xn)
. (51)

The estimated position of the root is then

xn+1 = xn −
f (xn)

f ′(xn)
. (52)

Iteration stops once the desired accuracy is reached.

The procedure can be unstable near a horizontal asymptote or a local
extremum, but otherwise converges for an appropriate initial guess
(”approximate zero”).
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Newton’s method

Newton’s method

Assume we have a Newton series xk converging towards x∗ with
f ′(x∗) 6= 0.

We define the error at step k via

xk = x∗ + ek . (53)

Expanding f (xk) around x∗ yields

f (xk) = f (x∗) + f ′(x∗)ek +
1

2
f ′′(x∗)e

2
k + ... (54)

= f ′(x∗)ek +
1

2
f ′′(x∗)e

2
k + ... (55)

Expansion of f ′(xk) yields

f ′(xk) = f ′(x∗) + f ′′(x∗)ek + ... (56)
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Newton’s method

Newton’s method

We further have

ek+1 = xk+1 − x∗ = ek + (xk+1 − xk) (57)

= ek −
f (xk)

f ′(xk)
(58)

∼ ek −
f ′(x∗)ek + 1

2 f
′′(x∗)e

2
k

f ′(x∗) + f ′′(x∗)ek
. (59)

For a� b and e � 1, we have the approximate idendity

ae + 1
2be

2

a + be
=

e + 1
2be

2/a

1 + be/a
(60)

∼ (e +
1

2
be2/a)(1− be/a) (61)

∼ e − 1

2
be2/a− 1

2
b2e2/a2 ∼ e − 1

2
be2/a. (62)
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Newton’s method

Newton’s method

Application to Eq. (59) yields the series

εk+1 ∼
f ′′(x∗)

2f ′(x∗)
ε2
k . (63)

If Newton’s method converges, it thus converges quadratically!

Newton’s method is thus the preferred method for root finding; if it
does not converge, one may however refer to bisection.
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Newton’s method 2D

Newton’s method 2D

We extend Newton’s method to 2D, from which a further
generalization is straightforward.

This approach can also be used for complex functions, which can
always be considered as functions of two arguments x and y .

We consider the following system of equations:

f1(x , y) = 0, (64)

f2(x , y) = 0. (65)

For this system of equations, we define the Jacobian matrix as

J(x , y) =

(
∂f1
∂x (x , y) ∂f1

∂y (x , y)
∂f2
∂x (x , y) ∂f2

∂y (x , y)

)
. (66)
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Newton’s method 2D

Newton’s method 2D

We further introduce generalized differentials. For this purpose, we
consider the functions

u = f1(x , y), (67)

v = f2(x , y). (68)

Their differentials are given as

du =
∂f1
∂x

(x , y)dx +
∂f1
∂y

(x , y)dy , (69)

dv =
∂f2
∂x

(x , y)dx +
∂f2
∂y

(x , y)dy . (70)

This can be recast as(
du
dv

)
=

(
∂f1
∂x (x , y) ∂f1

∂y (x , y)
∂f2
∂x (x , y) ∂f2

∂y (x , y)

)(
dx
dy

)
. (71)
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Newton’s method 2D

Newton’s method 2D

Introducing

d ~U =

(
du
dv

)
, (72)

J =

(
∂f1
∂x (x , y) ∂f1

∂y (x , y)
∂f2
∂x (x , y) ∂f2

∂y (x , y)

)
, (73)

d ~X =

(
dx
dy

)
, (74)

the generalized differential can be cast as

d ~U = J d ~X . (75)
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Newton’s method 2D

Newton’s method 2D

We consider the following equation

~F (~X ) = 0, (76)

which we aim to solve with Newton’s method in 2D. We start with an
initial guess ~P0 = (p0, q0). In each step i , we perform the following
procedure:

1 Evaluate ~F (~Pk).
2 Evaluate J(~Pk).
3 Solve the linear system of equations

J(~Pk)∆~P = −~F (~P) (77)

for ∆~P. In a case of higher dimensionality, this can be done using the
Gauss elimination method or more advanced procedures.

4 Continue the iteration with ~Pk+1 = ~Pk + ∆~P.
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Newton’s method 2D

Newton’s method 2D

The method has similar properties as in 1D. In particular, it has a
quadratic convergence, and requires that the function has a non-zero
derivative at the root.

However, root finding in 2D and higher dimensions is generally more
difficult, especially if several roots are involved. In such cases, already
a good initial guess is required, or one must screen through a large
parameter space to determine the roots.
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Newton’s method 2D

The secant method

Figure: The secant method for root finding.
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Newton’s method 2D

The secant method

The secant method is a straightforward extension of Newton’s
method, which requires two data points as an initial guess.

In this method, the derivative of the function is approximated with a
difference quotient.

The iteration procedure is thus

xn+1 = xn − f (xn)
xn − xn−1

f (xn)− f (xn−1)
. (78)

Convergence is superlinear, but not quadratic. The order of
convergences corresponds to the golden ratio

q =
1 +
√

5

2
∼ 1.618. (79)

A generalization to higher dimensions is straightforward.

The secant method predates Newton’s method by about 3000 years.
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